
Abstract. State correlation diagrams for radical reac-
tions are calculated from potential energy surfaces for
the model process Aÿ B� C! A� Bÿ C including
the HÿH�H reaction of three one-electron atoms
with ab initio valence bond con®guration interac-
tion in a minimal 1s basis. E�ects of substituents are
simulated by a variation of the nuclear charges. Qual-
itative predictions derived from the diagrams agree well
with recent experimental and advanced theoretical data.
In general, the reaction barrier and the geometry of
addition and abstraction reactions depend strongly on
the reaction enthalpy, but there are marked exceptions if
charge transfer states of the reactants have particularly
low energies.

Key words: Valence bond theory ± State correlation
diagram ± Variable charges ± Polar e�ect ±
Enthalpy e�ect

1 Introduction

The course and the barriers of chemical reactions are
often conveniently discussed in terms of the correlation
of reactant and product states [1]. To construct a state
correlation diagram (SCD) for radical abstraction and
addition reactions, in particular,

R � � XÿY! RÿX�Y�
R � � X � Y! RÿXÿY�
one considers the doublet states of a model three-
electron system formed by the initially unpaired radical
electron and the electron pair of the attacked bond
[2±5]. From spin pairing schemes [2±5] and simple
valence bond arguments [3, 6] it is qualitatively con-
cluded that the energies of the lowest reactant states
should develop along the reaction coordinate as shown
schematically in Fig. 1, where the attacked molecule is
abbreviated as M. In the absence of con®guration
interaction the energy of the reactant ground state with

the singlet bonding electron pair on M approaches the
®rst excited state of the product, whereas an unpolar
excited reactant state with a triplet electron pair on M
approaches the product ground state (broken lines). The
mixing of these states causes an avoided level crossing
and explains the barrier E0. Furthermore, polar charge
transfer states of the reactants are stabilized on ap-
proach of the species by the Coulomb attraction. They
mix with the unpolar states [3, 5, 6], and this lowers E0.
This SCD allows important predictions on the in¯uence
of parameters of the reacting systems on the reaction
barriers. With increasing reaction exothermicity �ÿH r�
and decreasing singlet-triplet energy gap �DEst� of M the
barrier E0 should decrease and, simultaneously, the
distance between the reactants in the transition state
should increase. In addition, the polar charge transfer
e�ects will be important if and only if the energies of
the reactant charge transfer states IP(R)-EA(M) and
IP(M)-EA(R) are low. This should become apparent by
correlations of E0 with the ionization potentials (IP)
and electron a�nities (EA) of the reacting species.

Recently, these predictions have been nicely veri®ed
for additions of several alkyl radicals to various mono-

Fig. 1. Schematic state correlation diagram (SCD) for radical
abstraction and addition reactions
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and 1,1-disubstituted alkenes both by high-level theory
[7] and experiment [8]. In most cases the variation of the
reaction barriers with alkene substitution was found to
be dominated by the changes of H r, but for some
radicals with very low IP or high EA the polar e�ects of
low-lying charge transfer states play the deciding role
[8, 9].

Here, we present a theoretical valence bond con®gu-
ration interaction (VBCI) study which aims at a better
understanding of the inner working of the SCD for the
three-center three-electron model of radical reactions.
We consider the reaction of three one-electron atoms
AÿB� C! A� BÿC in a linear arrangement, and use
a minimal 1s basis set of orbitals a, b, c at the atoms. In
the full VBCI calculation all eight possible doublet states
are taken into account. The integrals are evaluated ex-
actly within the STO-6G frame. To vary the relevant
energies H r;DEst and IP-EA, i.e. to approximate sub-
stituent e�ects in radical reactions, the nuclear charges
of the atoms are varied.

For unit nuclear charges our system is, of course, the
linear H2 �H! H�H2 reaction which has been
studied extensively since 1929, with increasing levels of
accuracy [10]. The potential energy surface (PES) for
the electronic ground state is known theoretically to the
experimental precision [11] of about 1 kj/mol which can
not be reached here. Therefore, we will only compare
our minimal basis VBCI results with similar earlier
calculations. More related to this work are the con-
structions of SCDs for the H2 �H reaction by BonacÏ icÏ -
KouteckyÂ et al. [3], Shaik et al. [6] and by Klessinger
and HoÈ weler [12] and for H2 �H2 by Gerhartz et al.
[13] from which this work di�ers in the choice of the
diabatic reference functions, the evaluation of the in-
tegrals and the simulation of substituent e�ects.

2 Computational method

The atoms A, B and C carry nuclear charges ZA;
ZB and ZC; and possess one 1s orbital a, b and c each.
The three electrons occupy these orbitals with
occupation numbers 0, 1 and 2. The wavefunctions
are constructed from the following linear combina-
tions of Slater determinants corresponding to dou-
blets with Ms � �1=2. They represent physically
meaningful electronic con®gurations of the reactants
at in®nite separation:

u1 � N1 k a�bc k � k b�ac kÿ �
1AB� C AB covalent ground state, �1a�

u2 � N2 k a�bc k ÿ k b�ac k � 2k a�cb kÿ �
3AB� C AB covalent triplet state, �1b�

u3 � N3 k a�cc k � k b�cc k� �
sAB� � Cÿ AB polar symmetric, �1c�

u4 � N4 k a�ac k ÿ k b�bc kÿ �
aAÿB� � C AB zwitterionic asymmetric; �1d�

u5 � N5 k a�ab k � k a�bb kÿ �
sABÿ � C� AB polar symmetric, �1e�

u6 � N6 k a�ac k � k b�bc kÿ �
sAÿB� � C AB zwitterionic symmetric; �1f�

u7 � N7 k a�cc k ÿ k b�cc k� �
aAB� � Cÿ AB polar asymmetric; �1g�

u8 � N8 k a�ab k ÿ k a�bb kÿ �
aABÿ � C� AB polar asymmetric. �1h�

The covalent quartet con®guration u9 � N9 k a�bc kÿÿ
k b�ac k ÿ k a�cb k� does not interact and is not considered
further.

As is obvious from Fig. 1, a SCD represents the
energies of Born-Oppenheimer states and of reference
electronic states plotted together versus the reaction
coordinate (RC). This implies that the calculation of a
SCD requires the determination of the PESs, for both
sets of states, the location of the RC on the PES of the
lowest Born-Oppenheimer state, and the construction of
the energy pro®les of all states along RC. Our procedure
involved the following steps: selection of a spatial grid
for the PESs, calculation of the overlap integrals Sps; the
core integrals Ips and the two-electron integrals (ps|qt)
between the atomic orbitals p; q; s; t 2 fa; b; cg at each
grid point, transformation of the integrals between the
atomic orbitals into integrals between Slater determi-
nants, addition of the nuclear Coulomb repulsion and
collection of the data as matrix elements between the
doublet basis functions ui, diagonalization of the VBCI
matrix HBO ÿ ES, re®nement of the PESs by interpol-
ation, location of the reaction coordinate on the ground
state PES and calculation of all energies and state
vectors along the RC.

The linear reaction con®guration was chosen, because
it is known to give the minimum energy path for the
H2 �H reaction [11]. For the calculation of SCDs the
internuclear distances rAB and rBC were set to the values
rAB; rBC 2 f0:5; 0:6; step 0:05; 1:5; step 0:1; 2:0; step 0:2;
3:0; 3:5; 4:0; 5:0; 6:0 ÊAg giving 342 grid points. For more
exact calculations of reactants, products and transition
states a grid of smaller size but with ®ner spaces around
the relevant geometries with rAB; rBC2f0:675; step 0:025;
1:1; 80; 90; 100 ÊAg was applied.

The integrals between the atomic orbitals were cal-
culated using the Gaussian 92 computer program [14]
in STO-6G. STO-3G led to similar results. The input
included the de®nition of the type of calculation for
each point, the output format and the link to the next
geometry. Then, the Gaussian 92 integrals between
STO-6G orbitals were converted to integrals between
Slater determinants with the formulae

hk p�qr k HBO k s�tu ki � VNNSpsSqtSru
ÿ V NNSpuSqtSrs � IpsSqtSru � IqtSpsSru

� I ruSpsSqt ÿ IpuSqtSrsÿ
ÿ IqtSpuSrs ÿ I rsSpuSqt � �psjqt�Sru
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� �ps j ru�Sqt � �qt j ru�Sps ÿ �pu j qt�Srs

ÿ �pu j rs�Sqt ÿ �qt j rs�Spu; �2a�
hk p�qr k j k s�tu ki � SpsSqtSru ÿ SpuSqtSrs; �2b�
where p; q; r; s; t; u 2 fa, b, cg. At this point the
nuclear repulsion term V NN is added with proper
account of the variation of nuclear charges. Then the
elements of HBO and S are obtained by ®rstly converting
the elements from the basis of Slater determinants to the
basis of their unnormalized combinations u0i � ui=Ni
and ®nally by multiplication with the appropriate
normalization factors which are obtained from the
overlap integrals.

In the next steps, the Matlab computer program [15]
was used to diagonalize the matrix BBO ÿ ES at each
point and to create the PESs. These were re®ned with a
cubic interpolation procedure to a tenfold ®ner resolu-
tion. Test calculations at interpolated points ensured
negligible energy deviations.

Known algorithms for ®nding the reaction coordinate
on a calculated PES require an analytical expression for
the ground state surface [16] or a recalculation of the
energy during the search [17, 18]. For our case the fol-
lowing alternative routine was found convenient. The
®rst point of the reaction coordinate is found for a large
reactant distance of r0BC � 6 or 100 AÊ , respectively, with
r0AB taken from the reactant geometry at the minimum
ground state energy. During the reaction rBC decreases
whereas rAB increases. By decreasing rBC and increasing
rAB, simultaneously, one reaches three new positions

r0BC ÿ 2dBC; r0AB
� 	

; r0BC; r0AB � 2dAB
� 	

and
�

r0BCÿ dBC;
r0AB � dAB

	
on the grid dAB; dBCf g. The lowest energy

point of these is chosen as the second point on the RC,
and this process is iterated until the product geometry is
reached. This led to a completely reversible reaction
path. The program then provided all VBCI energies
along the reaction coordinate and the coe�cients of the
expansion of the states wi �

P
cijuj:

The choice of the reference states for SCDs is some-
what arbitrary. It is clear that they must represent
physically meaningful electron con®gurations [19] such
as the eigenstates of the Born-Oppenheimer Hamiltoni-
an at one given point of the RC [20]. Here, we adopt the
VBCI states at the reactant geometry as logical refer-
ence states and refer to these states as diabatic and to
the VBCI combinations as adiabatic. Instead of frozen
reactant states other linear combinations can be chosen
which lead to a more symmetrical SCD [4±6].

3 Results and discussion

3.1 The H2 �H reaction

It is illustrative to consider ®rst the SCD arising from the
interaction of the two covalent Heitler-London reference
states 1H2 �H�u1� and 3H2 �H�u2� of the reactants
because this already shows some essential features. The
2X2 VBCI problem has been solved analytically in
previous work [3, 6, 12, 21], but with some approxima-

tions. For completeness we have now calculated the full
solution retaining all overlap integrals. For the reactant
(r), product (p), and the transition state (t) the wave-
functions are:

w1r � 2 1� S2
ÿ �ÿ �ÿ1=2 k a�bc k � k b�ac k� 	

; �3a�
w2r � 6 1ÿ S2

ÿ �ÿ �ÿ1=2 k a�bc k ÿ k b�ac k � 2k a�cb k� 	
;�3b�

w1p � 2 1� S2
ÿ �ÿ �ÿ1=2 k a�bc k � k a�cb k� 	

; �3c�
w2p � 6 1ÿ S2

ÿ �ÿ �ÿ1=2 k a�bc kÿk a�cb k � 2k b�ac k� 	
; �3d�

w1t � 6 1� S21 ÿ S22 ÿ S21S2
ÿ �ÿ �ÿ1=2

2k a�bc k � k b�ac k � k a�cb k� 	
; �3e�

w2t � 2 1ÿ S21 � S22 ÿ S21S2
ÿ �ÿ �ÿ1=2

k b�ac k ÿ k a�cb kf g ; �3f�
where S � Sab for the reactants, S � Sbc for the products,
and S1 � Sab � Sbc; S2 � Sac for the transition state.
They have the energies:

E1;2;r � V NN � Icc � 1� S2
ÿ �ÿ1

Iaa � Ibb � aa j bb� � � ab j ab� � � 2IabSf g; �4a�
E1;2;p � E1;2;r with (a) replaced by (c); �4b�
E1;2;t � 1� S21 � S22 ÿ S21S2

ÿ �ÿ1
K ÿM � L1 ÿ L2� �f g �4c�

where

K � 2Iaa � Ibb � 2 aa j bb� � � aa j cc� �
M � 2Iab � Iac� �S21 � 2 abjac� �S1 � abjbc� �S2 �5�
L1 � IaaS21 � abjab� � � 2 Iab � aajbc� �� �S1
L2 � IbbS22 � acjac� � � 2 Iac � bbjac� �� �S2:

The energetically lower state wi represents the bond-
ing con®gurations �1H2 �H� for the reactants and
�H� 1H2� for the products, and their allylic superposi-
tion �1H2 �H� � �H� 1H2� for the transition geome-
try. The upper state w2 is described by �3H2 �H� and
�H� 3H2� for reactants and products and yields a bond
at the transition geometry between the outer atoms and
an unpaired electron at the center [21]. Expression of wp
and wt in terms of the reactant reference states wr leads
to

w1p �
1

2
���
2
p 2ÿ S2

1� S2

� �1=2

w1r �
���
3
p

2
���
2
p 2� S2

1� S2

� �1=2

w2r ; �6a�

w2p �
���
3
p

2
���
2
p 2ÿ S2

1ÿ S2

� �1=2

w1r ÿ
1

2
���
2
p 2� S2

1ÿ S2

� �1=2

w2r ; �6b�

w1t �
���
3
p

2
���
2
p 2� S21 ÿ S22 ÿ 2S21S2

1� S21 ÿ S22 ÿ S21S2

 !1=2

w1r

� 1

2
���
2
p 2ÿ S21 � S22 ÿ 2S21S2

1� S21 ÿ S22 ÿ S21S2

 !1=2

w2r ; �6c�
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w2t �
1

2
���
2
p 2� S21 ÿ S22 ÿ 2S21S2

1ÿ S21 � S22 ÿ S21S2

 !1=2

w1r

ÿ
���
3
p

2
���
2
p 2ÿ S21 � S22 ÿ 2S21S2

1ÿ S21 � S22 ÿ S21S2

 !1=2

w2r ; �6d�

with w1r and w2r normalized at the relevant geometries.
These equations show that the product ground state

w1p has a larger contribution of the excited reactant state
w2r than of the ground state w1r, and the converse is true
for w2p. However, since both product states are linear
combinations of both reactant states the transforma-
tions of w1p into w2r and of w2p into w1r as suggested by
Fig. 1 are simpli®cations. This has been noticed before
[6] and can be avoided by use of a di�erent but less
natural basis. For the linear transition geometry the
ground state w1t has a larger contribution of the reactant
ground state than of the excited state, and the excited
state w2t is mostly composed of w2r, as is intuitively ex-
pected.

Figure 2 shows the energies of the states w1 and w2
(full lines) and the energy expectation values of the ref-
erence states w1r and w2r (broken lines) along the reac-
tion coordinate. As indicated by the representations in
Eqs. (6a±d) the energies of the reference state do not
reach the adiabatic energies at the product geometry.
They do cross, though at a position which is slightly later
than the transition state. Also, the energy splitting at the
crossing point is not symmetric.

Inclusion of the zwitterionic and polar con®gurations
u3±u8 [Eqs. (1c±h)] leads to a more complicated sit-
uation. For the reactant geometry the covalent con-
®guration u1 mixes with the symmetric zwitterionic
con®guration u6. Therefore, appropriate linear combi-
nations of these con®gurations were used as diabatic
states besides the pure reactant con®gurations u2±u5, u7
and u8. Figure 3 shows the evolution of the calculated
energies of these diabatic (upper part) and of the adia-

batic (lower part) states along the RC. The behavior of
the two lowest diabatic states is more symmetric than in
Fig. 2 and closer to Fig. 1. Also, one clearly notices the
Coulomb attraction for the charge transfer states
sH�2 �Hÿ and sHÿ2 �H�. They reach particularly low
energies at the transition state geometry and are ex-
pected to mix strongly with the lower energy states. The
positive energy excursions of the corresponding adia-
batic states at the transition geometries con®rm this
expectation. In the full PES these charge transfer states
show pronounced and extended energy minima at
rAB � rBC � 1:5 ÊA and rAB � rBC � 2:0 ÊA, respectively,
which we have not found described before.

The trends deduced from Eqs. (6a±d) and Figs. 2 and
3 are con®rmed by the calculated expansion coe�cients
of the ground state w1 �

P
c1juj at selected points of the

RC (Table 1).
From reactant to product the contribution of u1

decreases whereas that of u2 increases. At the transition
geometry there are substantial contributions of the
symmetric charge transfer con®gurations u3 and u5.
For the reactant and product geometries the 8X8 VBCI
coe�cients are equivalent to

Fig. 2. Calculated SCD for the H2 �H reaction �2X2 VBCI,
f � 1:24�

Fig. 3. Calculated SCD for the H2 �H reaction. Upper part:
reference reactant states, Lower part: adiabatic states �8X8 VBCI,
f � 1:24�
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w1r � 0:4624 k a�bc k � k b�ac kÿ �
� 0:1330 k a�ac k � k b�bc kÿ �

; �7a�
w1p � 0:4624 k a�bc k � k a�cb kÿ �
� 0:1330 k a�bb k � k a�cc kÿ �

; �7b�
i.e. necessarily the same superposition of covalent and
zwitterionic con®gurations. Population analyses of the
non-orthogonal basis states ui according to various
methods [22] give the same result.

Table 2 displays the energies and bond lengths ob-
tained in this and in previous work using di�erent VBCI
and MOCI methods. The ®rst six rows show that opti-
mization of the orbital exponents f decreases the ab-
solute energy markedly whereas orbital ¯oating has only
a small e�ect. Inclusion of polar and zwitterionic con-
®gurations in the full VBCI lowers the barrier substan-
tially. The results of a SCF MO QCISD calculation fully
agree with the corresponding 8X8 VBCI data.

Our data also agree with the previous VBCI results of
rows 7±9 but they are, as expected, quite far from the
best theoretical and the experimental values. Of course,

the VBCI calculations could be improved by enlarging
the basis set. This would remove the de®ciency of some
unnaturally high energy states in Fig. 3 but cannot
change the general interaction pattern of the lower states
and the main conclusion, namely, that the polar charge
transfer con®gurations contribute markedly to the
transition state of even the H2 �H reaction. Although
this was already contained in Hirschfelder's early results
[23] it has not been clearly expressed before.

3.2 Modelling of substituent e�ects

In radical addition and abstraction reactions substitu-
ents of the radical and the substrate molecule alter the
reaction enthalpy (ÿH r) and the location of the excited
reactant con®gurations [DEST, IP(R)-EA(M), IP(M)-
EA(R)]. They are thought thereby to change the reaction
barrier [3±8]. In quantum chemical models such e�ects
may be simulated by core potentials at the substitution
centers [12], and here this is modeled by setting the
nuclear charges at A, B and C to 1� qA, 1� qB
and 1� qC. For a total of 201 combinations
fqA � q; qB;C � 0g, fqB � q; qA;C � 0g, qC � q;f
qA;B � 0g, fqA � q � �qB; qC � 0g, fqA � q � �qC;
qB � 0g, fqB � q � �qC; qA � 0g; fqA;C � q1; qB
� q2g, fqA;B � q1; qC � q2g, fqA;B;C � 0g and q,
q1, q2 � �0:1,�0:05, �0:02 and �0:01, the PESs and
SCDs were calculated using the 8X8 VBCI routine
as before with the STO-6G basis, standard f and no
orbital ¯oating. The large number of calculations
does not allow discussion of the results individually.
Hence, most of them are presented and discussed
globally, in particular with respect to the desired
correlations of the barrier properties with H r and the
reactant state energies. Also, some data for thermo-

Table 1. Expansion coe�cients of the VBCI ground state W1 at selected

geometries: r = reactants, p = products, t = transition state

Con®guration 2X2 VBCI 8X8 VBCI

r t p r t p

u1
1H2 + H 1 0.816 0.361 0.788 0.584 0.290

u2
3H2 + H 0 0.406 0.794 0 0.293 0.628

u3
sH�2 + H) 0 0.141 0.083

u4
aH+H) + H 0 )0.007 0

u5
sHÿ2 + H+ 0 0.139 0.094

u6
sH+H) + H 0.226 0.155 0

u7
aH�2 + H) 0 0.010 0.083

Table 2. Energies and bond lengths for the H2+H reaction

Method EH EH2
rH2

BEH2
ETS rTS BETS E0

[eV] [eV] [AÊ ] [KJ/Mol] [eV] [AÊ ] [KJ/Mol] [KJ/Mol]

2X2 VBCI, f=1.24 )12.82 )30.86 0.704 502.8 )42.03 0.909 344.6 158.2

2X2 VBCI, fopt
a )13.60 )30.99 0.749 363.3 )43.25 1.033 235.1 128.2

8X8 VBCI, f = 1.24 )12.82 )31.18 0.733 533.5 )43.07 0.934 444.1 89.4

8X8 VBCI, fopt
b )13.60 )31.23 0.756 386.5 )43.81 0.997 288.9 97.6

8X8 VBCI, fopt, ¯oat
c )13.60 )31.29 0.756 392.7 )43.84 0.999 291.4 101.4

MO QCISDd )13.60 )31.23 0.757 387.1 )43.84 1.009 291.5 95.6

Hirschfelder, 1936e 0.751 385.9 0.974 280.7 105.2

Linnett, 1966f )43.9 1.00 92.1

Klessinger, 1983g 0.979 98

Liu, 1984h )13.60 )31.96 0.741 457.4 )45.14 0.930 417.1 40.1

Expi )13.60 )31.96 0.741 458 )45.14 421 40

a Reactants: fa,b = 1.166, fc = 0.999; transition state: fa,c = 1.053, fb = 1.079
b Reactants: fa,b = 1.194, fc = 1.000; transition state: fa,c = 1.060, fb = 1.203
c Floating orbitals and optimized f; reactants: fa,b= 1.190, fc = 0.999, rab = 0.716 AÊ ; transition state: fa,c = 1.055, fb = 1.215, rab = rba =
0.984 AÊ
d MO QCISD/STO-6G with optimized f fromb

e 4X4 VBCI: reactants: fa,b,c = 1.193; transition state: fa,b,c = 1.087, integrals calculated explicitely; see Ref. [23]
f 8X8 VBCI: transition state: fa,c = 1.06, fb = 1.21, some integrals approximated; see Ref. [27]
g 2X2 VBCI with optimized f and ¯oating orbitals, integrals approximated; see Ref. [12]
h From Ref. [11]
i From Ref. [28]
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neutral reactions are not shown since they did not
provide signi®cant additional information.

Figure 4 con®rms one of the major predictions derived
from the SCD. Apart from a few numbered cases which
will be discussed later on the reaction barrier decreases
with increasing exothermicity (ÿH r). A linear regression
gave Ea � 0:90� 0:53H r�R2 � 0:76�. Interestingly, its
slope is very similar to the slopes of 0.40±0.56 calculated
for the addition of several alkyl radicals to alkenes with
high-level MO methods by Wong et al. [7]. Experimen-
tally somewhat lower slopes of 0.21±0.26 have been
found [8]. Also as expected from the qualitative SCD, the
distance of the approaching centers rBC in the transition
state decreases with increasing reaction endothermicity
H r (Fig. 5), i.e the transition state becomes later for the
more endothermal reactions. The linear correlation is
expressed by rBC � 0:935ÿ 0:065 H r �R2 � 0:76� where
rBC is given in ÊA and H r in eV. Again, by high-level MO
calculations on polyatomic systems similar dependences
have been found [7], though with di�erent slopes. These

may re¯ect the much looser transition state for the
addition reactions considered by Wong et al.

The SCD also predicts that E0 and rBC at the tran-
sition state should depend on the singlet-triplet splitting
DEST. A decrease of rBC with increasing DEST was indeed
found but no clear correlation of E0 with this parameter
was obtained, which may be due to the limitations of the
model.

On the other hand, the e�ects of low-lying charge
transfer states are clearly recognized. Figure 6 shows E0

as a function of the energy gaps between the ground
state and the reactant states AB� � Cÿ and ABÿ � C�.
The numbered points are the same as in Fig. 4, and it is
now obvious that the particularly low barriers for these
numbered cases originate from particularly large charge
transfer contributions which stabilize the transition
state. This is con®rmed by correspondingly large coe�-
cients (0.20 ± 0.26) of the charge transfer con®gurations
in the transition state wavefunction.

For the large combination qA � qB � ÿ0:1; qC ��0:1, which corresponds to point 1 in Figs. 4 and 6, the
state correlation diagram is shown in Fig. 7. Due to the
stabilization of AB� the reactant charge transfer con-
®guration sAB� � Cÿ now has a lower energy than the
unpolar triplet state 3AB� C. In the transition region
there are two avoided crossings of low energy states.
Interestingly, this has little e�ect on the behavior of the
lowest adiabatic states, i.e. the schematic SCD of Fig. 1
is obeyed even in such extreme cases.

From the examples above it is clear that enthalpic
and polar charge transfer e�ects both in¯uence the re-
action barrier, so that a separation would be desirable.
For addition reactions of nucleophilic radicals with
electron-de®cient alkenes this was found di�cult [7, 8]
because the electron a�nities of the alkenes correlate
with the reaction exothermicity, and the enthalpy and
polar e�ects parallel each other. Here, the same corre-
lation is found for the systems with low IP(C)-EA(AB)
which are represented by the points 1¢±4¢ in Figs. 4 and 6
i.e. a clear separation of polar and enthalpic e�ects was
not achieved. However, for the case of low IP(AB)-

Fig. 4. Reaction barrier versus reaction enthalpy. Numbered points
refer to systems with large charge transfer

Fig. 5. Reaction distance versus reaction enthalpy Fig. 6. Reaction barrier versus polar states energies
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EA(C), i.e. strongly electrophilic radicals reacting with
electron-rich substrates no correlation of IP(AB) with H r

was obtained. This is compatible with the surprisingly
good correlations of rate constants for the addition of
several ¯uoroalkyl radicals to electron-rich alkenes with
the alkenes IP [9].

Finally, we note that the VBCI calculations also
correctly model the general reactivity pattern of the
hydrogen atom. From Hammett qr relations this is
known to be slightly electrophilic in abstraction reac-
tions from substituted toluenes and in addition reactions
to substituted aromatic and heterocyclic compounds
[24]. Rate constants for the hydrogen addition to halo-
alkenes in the gas phase [25] and the partial electron
transfer from the substrate to the hydrogen atom found
in calculated transition states for the addition to ethene,
vinylamine and ethine [26] support this view. In our
modeling of substituent e�ects by variation of nuclear
charges, the electrophilicity is most clearly expressed by
results obtained for the set of charges ZA � ZC

� ZH � 1 and ZB variable. For these cases the reaction

is thermoneutral, and any variation of E0 with the nu-
clear charge of the transferred atom B must be mainly
due to polar e�ects. Figure 8 shows that the energy of
the lower charge transfer state AB� � Cÿ decreases with
decreasing ZB whereas that of the higher state
ABÿ � C� increases as a natural consequence of the
decreasing Coulomb attraction for atom B. The barrier
E0 also decreases due to the larger contribution of
AB� � Cÿ. This is in accord with the electrophilic be-
havior but in comparison to the data given in Figs. 4
and 6 the variations of E0 are small, i.e. the hydrogen
atom is also calculated to be only slightly electrophilic
as observed.

4 Conclusion

In summary, the VBCI results on the three-electron
three-center model strengthen the utility of the intuitive-
ly created SCD of Fig. 1 in discussions of factors which
in¯uence radical abstraction and addition reactions and
reveal some simpli®cations involved in its construction.
They also show that charge transfer con®gurations are
generally important for the exact theoretical description
of transition states, and this agrees with the established
need for extensive con®guration interaction in high-level
ab initio molecular orbital calculations [7]. The large
in¯uence of the reaction enthalpy on the reaction
barriers is con®rmed, and it is also demonstrated that
in favorable cases polar substituent e�ects can become
dominant. Further, the weak electrophilicity of the
hydrogen atom in addition and abstraction reactions is
correctly simulated.

Fig. 7. Calculated SCD for the AB� C! A� BC with ZA � ZB

� 1:1, ZC � 0:9: Upper part: reference reactant states. Lower part:
adiabatic states �8X8 VBCI, f � 1:24�

Fig. 8. Calculated energies of the reactant charge transfer states and
the reaction barrier E0 for the nuclear charges ZA � ZC � 1, i.e.
A � C � H; and various values of ZB
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